

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

673593241

FURTHER MATHEMATICS

9231/12

Paper 1 Further Pure Mathematics 1

May/June 2022

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

	3	
	a be a positive constant. $\frac{n}{n}$	
(a)	Use the method of differences to find $\sum_{r=1}^{n} \frac{1}{(ar+1)(ar+a+1)}$ in terms of n and a .	[-
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
	∞	•
(b)	Find the value of a for which $\sum_{r=1}^{\infty} \frac{1}{(ar+1)(ar+a+1)} = \frac{1}{6}.$	[.

2 The points A, B, C have position vectors

$$4\mathbf{i} - 4\mathbf{j} + \mathbf{k}$$
, $-4\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$, $4\mathbf{i} - \mathbf{j} - 2\mathbf{k}$,

respectively, relative to the origin O.

Find the equation of the plane ABC, giving your answer in the form $ax + by$	$y + cz = d. ag{5}$]
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•
		•

(U)	Find the perpendicular distance from O to the plane ABC .	[2]
		••••••
2)	The point <i>D</i> has position vector $2\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$.	
	Find the coordinates of the point of intersection of the line <i>OD</i> with the plane <i>ABC</i> .	[3
		•••••
		•••••
		•••••
		•••••

3	The sequence of	positive numbers u_1 ,	u_2, u_2, \dots	is such that u	> 4 and,	for $n \ge 1$,
_	1110 000 0001100 01	positi i di mini di si i i i i	, ,, ,	10 000011 011000 00		101 1

$$u_{n+1} = \frac{u_n^2 + u_n + 12}{2u_n}.$$

Г	By considering $u_{n+1}-4$, or otherwise, prove by mathematical induction that ositive integers n .						
•••				· 			
•••		•••	••••	•••			
•••		•••	•••	• • • •	••••		
			•••	· 			
			•••	· • • •	••••		
•••				· 			
•••			• • • •		••••	•••	
•••		•••			• • • •		
•••			• • • •	· • • •	••••		
				· 			
				· 		, .	
•••			• • • •	••••	• • • • •	•	
•••		•••	•••		••••		
•••					• • • •		
•••			•••	· • • •	••••		
				· 			
•••		•••	••••	•••			

 $@ \ UCLES \ 2022 \\$

		••••
		•••
		· • • •
		• • •
		•••
(b)	Show that $u = \langle u \text{for } n > 1$	[3]
(D)	Show that $u_{n+1} < u_n$ for $n \ge 1$.	[د.
		•••
		•••
		· • • •
		• • • •
		• • • •
		· • • •
		•••
		• • • •

(a)	Find a cubic equation whose roots are $\frac{1}{\alpha^3}$, $\frac{1}{\beta^3}$, $\frac{1}{\gamma^3}$.	[3]
(b)	Find the value of $\frac{1}{\alpha^6} + \frac{1}{\beta^6} + \frac{1}{\gamma^6}$.	[3]

]	Find also the value of $\frac{1}{\alpha^9} + \frac{1}{\beta^9} + \frac{1}{\beta^9}$	$\frac{1}{\gamma^9}$. [2]

a)	Show that C has no vertical asymptotes and state the equation of the horizontal asymptotes.	te of C
-/		[3]
		•••••
)	Find the coordinates of the stationary points on C	14
)	Find the coordinates of the stationary points on <i>C</i> .	[4]
)	Find the coordinates of the stationary points on <i>C</i> .	[4]
)	Find the coordinates of the stationary points on <i>C</i> .	[4]
)	Find the coordinates of the stationary points on <i>C</i> .	[4]
)	Find the coordinates of the stationary points on <i>C</i> .	[4]
)	Find the coordinates of the stationary points on <i>C</i> .	
)		[4]
)		
)		
)		
)		
•)		
•)		
)		

(c)	Sketch <i>C</i> , stating the coordinates of the intersections with the axes.	[3]
(d)	Sketch the curve with equation $y = \left \frac{2x^2 - x - 1}{x^2 + x + 1} \right $ and state the set of values of k for wh	nich

[2]

 $\left| \frac{2x^2 - x - 1}{x^2 + x + 1} \right| = k$ has 4 distinct real solutions.

The	curve C has polar equation $r^2 = \tan^{-1}(\frac{1}{2}\theta)$, where $0 \le \theta \le 2$.	
	Sketch C and state, in exact form, the greatest distance of a point on C from the pole.	[3]
(b)	Find the exact value of the area of the region bounded by C and the half-line $\theta=2$.	[5]

	1
No	w consider the part of C where $0 \le \theta \le \frac{1}{2}\pi$.
(c)	Show that, at the point furthest from the half-line $\theta = \frac{1}{2}\pi$,
	$(\theta^2 + 4)\tan^{-1}\left(\frac{1}{2}\theta\right)\sin\theta - \cos\theta = 0$
	and verify that this equation has a root between 0.6 and 0.7.

(a)	Find the set of values of k for which \mathbf{A} is non-singular.	
(b)	Given that A is non-singular, find, in terms of k , the entries in the top row of \mathbf{A}^{-1} .	
		•••••

	(0 - 0	')			uch that BA((K -1)	
•••••							•••••
•••••							
•••••		•••••		•••••		•••••	
•••••		••••••		•••••		••••••	
							•••••
							•••••
•••••							•••••
•••••							
• • • • • • • • • • • • • • • • • • • •							
• • • • • • • • • • • • • • • • • • • •		•••••	••••••			•••••	

tw	nd the set of values of k for which the transformation in the x - y plane represented by $\begin{pmatrix} 2 & 1 \\ k & 4 \end{pmatrix}$ vo distinct invariant lines through the origin.
•••	
•••	
•••	
• • •	
•••	
•••	
•••	
•••	
•••	
•••	

Additional page

If you use the following page to complete the answer to any question, the question number must be clear shown.	ly
	· • •

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.